An in vitro evaluation of various Rosa damascena flower extracts as a natural antisolar agent

Tabrizi H, Mortazavi SA, Kamalinejad M
International Journal of Cosmetic Science, 2003


The aim of this work was to evaluate ultraviolet (UV) absorption ability of various extracts of Rosa damascena flowers as an antisolar agent. Extracts were prepared using the following solvent mixtures: water:ethanol (50 : 50), ethyl acetate:ethanol (80 : 20) and ether. The hydroalcoholic and ethyl acetate:ethanol extracts were prepared by maceration, and ether extract was prepared by soxhletion. Preliminary studies on the extracts prepared confirmed the presence of flavonoids as the major components of all extracts. Next, the UV absorption spectra (in the range of 200-400 nm) of all extracts were obtained. Results show that all three extracts can effectively absorb UV radiation in the range of 200-400 nm. However, the range giving maximum absorption for the hydroalcoholic, ethyl acetate:ethanol and ether extracts were 200-320, 250-360 and 230-370 nm, respectively. In the next stage, extracts prepared were incorporated into an oil in water cream base (prepared based on preliminary studies), at two concentrations of 5 and 8%. The sun protection factor (SPF) of these creams were determined. Based on the findings, the hydroalcoholic extract seems to give the highest SPF among the three extracts evaluated, when incorporated to the cream base. On the other hand, by performing a few physicochemical tests on the prepared creams, cream containing 5% ether extract showed the most desirable appearance and stability among the creams investigated. The UV absorption ability of these extracts is suggested to be because of the presence of flavonoid compounds within the extracts. However, it should be noted that in order to obtain an effective suncare product with high SPF values, these extracts could be used along with other synthetic antisolar agents.


Tabrizi H, Mortazavi SA, Kamalinejad M. An in vitro evaluation of various Rosa damascena flower extracts as a natural antisolar agent. Int J Cosmetic Sci. 2003;25(6):259-265.

[maxbutton id=”156″]