Boswellia frereana (frankincense) suppresses cytokine-induced matrix metalloproteinase expression and production of pro-inflammatory molecules in articular cartilage.

Blain EJ, Ali AY, Duance VC
Phytotherapy Research, 2010


ABSTRACT:

The aim of this study was to assess the anti-inflammatory efficacy of Boswellia frereana extracts in an in vitro model of cartilage degeneration and determine its potential as a therapy for treating osteoarthritis. Cartilage degradation was induced in vitro by treating explants with 5 ng/ml interleukin1alpha (IL-1alpha) and 10 ng/ml oncostatin M (OSM) over a 28-day period, in the presence or absence of 100 microg/ml B. frereana. Treatment of IL-1alpha/OSM stimulated cartilage explants with B. frereana inhibited the breakdown of the collagenous matrix. B. frereana reduced MMP9 and MMP13 mRNA levels, inhibited MMP9 expression and activation, and significantly reduced the production of nitrite (stable end product of nitric oxide), prostaglandin E2 and cycloxygenase-2. Epi-lupeol was identified as the principal constituent of B. frereana. This is the first report on the novel anti-inflammatory properties of Boswellia frereana in an in vitro model of cartilage degradation. We have demonstrated that B. frereana prevents collagen degradation, and inhibits the production of pro-inflammatory mediators and MMPs. Due to its efficacy we propose that B. frereana should be examined further as a potential therapeutic agent for treating inflammatory symptoms associated with arthritis.

CITATION:

Blain EJ, Ali AY, Duance VC. Boswellia frereana (frankincense) suppresses cytokine-induced matrix metalloproteinase expression and production of pro-inflammatory molecules in articular cartilage. Phytother Res. 2010;24(6):905-912.


[maxbutton id=”53″]