Thymbra capitata (L.) Cav. and Rosmarinus officinalis (L.) Essential Oils: In Vitro Effects and Toxicity on Swine Spermatozoa

Elmi A, Ventrella D, Barone F, Filippini G, Benvenuti S, Pisi A, Scozzoli M, Bacci ML
Molecules, 2017


Essential oils possess a variety of biological properties (i.e., antioxidant, antibacterial, and cytotoxic) that could possibly be applied in reproductive medicine, but their effects on spermatozoa are still partially unknown. The aim of the study was to describe the effects of Thymbra capitata (L.) Cav. and Rosmarinus officinalis (L.) essential oils on the main morpho-functional parameters of swine spermatozoa. Essential oilswere preliminary characterized by gas chromatography and added with emulsifiers to facilitate diffusion. Experimental samples were prepared by suspending a fixed number of spermatozoa in 5 mL of medium with 10 different concentrations of essential oil (0.2-2 mg/mL, at intervals of 0.2). After 3 h of incubation, samples were analyzed for pH, viability, objective motility, and acrosome status. Results showed that the effects of the essential oils are concentration-dependent and that R. officinalis is well tolerated up to 0.6 mg/mL. T. capitataimpaired the spermatozoa starting from the lowest concentration, with complete spermicidal effect from 0.4 mg/mL. The patterns of damage, confirmed by SEM, were different and quite distinct. As expected, spermatozoa proved to be sensitive to external stimuli and capable of showing different functional patterns, providing interesting insights to the action/toxicity mechanisms. The results of the present work represent the first step towards the systematic characterization of the effects of these compounds on spermatozoa. This kind of studies are necessary to strengthen the idea of future applications of essential oils in the reproductive field due to their antioxidant, antibacterial, or spermicidal properties.


Elmi A, Ventrella D, Barone F et al.  Thymbra capitata (L.) Cav. and Rosmarinus officinalis (L.) Essential Oils: In Vitro Effects and Toxicity on Swine Spermatozoa. Molecules. 2017 Dec 6;22(12). pii: E2162. doi: 10.3390/molecules22122162.

[maxbutton id=”2524″]